Another week of Openstack stabilisation

I got good feedback on last week’s post about the stuff I’d achieved in Openstack, so I figured I’d do the same this week.

We left the hero of our tale (that would be me (it’s my blog, I can entitle myself however I please)) last Friday somewhat bleary eyed, hacking on a mountall patch that would more gracefully handle SIGPIPE caused by Plymouth going the way of the SIGSEGV. I got the ever awesome Scott James Remnant to review it and he (rightfully) told me to fix it in Plymouth instead. My suggested patch was much more of a workaround than a fix, but I wasn’t really in the mood to deal with Plymouth. Somehow, I had just gotten it into my head that fixing it in Plymouth would be extremely complicated. That probably had to do with the fact that I’d forgotten about MSG_NOSIGNAL for a little bit, and I imagined fixing this problem without MSG_NOSIGNAL would probably mean rewriting a bunch of I/O routines which I certainly didn’t have the brain power for at the time. Nevertheless,  a few attempts later, I got it worked out. I sent it upstream, but it seems to be stuck in the moderation queue for now.

I spent almost a day and a half wondering why some of our unit tests were failing “randomly”. It only happened every once in a while, and every time I tried running it under e.g. strace, it worked. It had “race condition” written all over it. After a lot of swearing, rude gestures and attempts to nail down the race condition, I finally noticed that it only failed if a randomly generated security group name in the test case sorted earlier than “default”, which it would do about 20% of the time. We had recently fixed DescribeSecurityGroups to return an ordered resultset which broke an assumption in this test case. Extremely annoying. My initial proposed fix was a mere 10 characters, but it ended up slightly larger, but the resulting code was easier on the eyes.

Log file handling has been a bit of an eye sore in Nova since The Big Eventlet Merge™. Since then, the Ubuntu packages have simply piped stdout and stderr to a log file and restartet the workers when the log files needed rotating. I finally got fed up with this and resurrected the logdir option and after one futile attempt, I got the log files to rotate without even reloading the workers. Sanity restored.

With all this done, I could now realiably run all the instances I wanted. However, I’d noticed that they’d all be run sequentially. Our workers, while built on top of eventlet, were single-threaded. They could only handle one RPC call at a time. This meant that if the compute worker was handling a long request (e.g. one that involved downloading a large image, and postprocessing it with copy-on-write disabled), another user just wanting to look at their instance’s console output might have to wait minutes for that request to be served. This was causing my tests to take forever to run, so a’fixin’ I went. This means that each worker can now (theoretically) handle 1024 (or any other number you choose) requests at a time.

To test this, I cranked up the concurrency of my tests so that up to 6 instances could started at the same time on each host. This worked about 80% of the time. The remaining 20% instances would entirely fail to be spawned. As could have been predicted, this was a new race condition that was uncovered because we suddenly had actual concurrency in the RPC workers. This time, iptables-restore would fail when trying to run multiple instances at the exact same time. I’ve been wanting to rework our iptables handling for a looong time anyway, so this was a great reason to get to work on that. By 2 AM between Friday and Saturday, I still wasn’t quite happy with it, so you’ll have to read the next post in this series to know how it all worked out.

One thought on “Another week of Openstack stabilisation

  1. Pingback: Tweets that mention Another week of Openstack stabilisation | Linux2Go -- Topsy.com

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>